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Setting



Multidimensional scaling

Multidimensional scaling (MDS) is the term used in psychometry/psychology and

statistics to refer to the problem of

Embedding a weighted graph into a Euclidean space.

Graph Embedding

Given a (undirected) weighted graph (V, E , δ) and embedding dimension d, find

y1, . . . , yn ∈ Rd such that

∥yi − yj∥ ≈ δij

for all (or most) (i, j) ∈ E .
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δij = dissimilarity between nodes (or items / objects) i and j.

We will assume that

� δii = 0 for all i

� δij ≥ 0 for all (i, j) ∈ E
� δij = δji for all (i, j) ∈ E

2



Similarities instead ?

Data may consist of similarities (or affinities/ proximities) between nodes.

If this is the case, and a method calls for dissimilarities instead, the usual avenue is to

apply a decreasing transformation to the similarities in order to be able to interpret

them as dissimilarities.

Remark

The freedom in the choice of transformation makes the situation effectively

non-metric, a variant of the embedding problem that we can also be dealt with more

advanced methods.
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The output of a method takes the form

y1, . . . , yn ∈ Rd,

or equivalently

Y :=


y⊤1
y⊤2
...

y⊤n

 ∈ Rn×d.

The desired embedding dimension d is assumed given except when discussing its choice.

(It can be seen as a tuning parameter of any method, although of a special kind.)
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Description and Derivation



The main method for MDS is classical scaling (CS).

CS requires that all the dissimilarities be available! (i.e. complete graph)

In that case, the input data can be gathered in a dissimilarity matrix

∆ :=


δ11 δ12 · · · δ1n

δ21 δ22 · · · δ2n
...

...
. . .

...

δn1 δn2 · · · δnn

 ∈ Rn×n
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Classical Scaling

Step 1: double-centering the matrix of squared dissimilarities

Form the matrix

∆c
2 = −1

2H∆◦2H, where H = I − 1
n11

⊤

Step 2: eigendecomposition

Let λ1 ≥ · · · ≥ λd be the top d eigenvalues and u1, . . . , ud be corresponding

normed eigenvectors of ∆c
2

Step 3: embedding

Form the output matrix

Y :=
(√

max(λ1, 0) u1 · · ·
√
max(λd, 0) ud

)
∈ Rn×d
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We first study the method in the realizable case, as this provides a clear motivation.

Definition

(V, E , δ) is realizable in dimension d if there exist x1, . . . , xn ∈ Rd such that

δij = ∥xi − xj∥ for all (i, j) ∈ E .

Remark

When a graph with n nodes is realizable, it is realizable in dimension ≤ n− 1.
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Euclidean point cloud

Let x1, . . . , xn be a (centered w.l.o.g.) point cloud so that

δij = ∥xi − xj∥ and x̄ := 1
n

∑
i xi = 0.

Key idea: Polarize the distances

(i.e. convert dissimilarities (Euclidean distances) into inner products (Gram matrix))
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Explaining double centering

We have

δ2ij = ∥xi − xj∥2 = ⟨xi, xi⟩+ ⟨xj , xj⟩ − 2⟨xi, xj⟩.

Therefore, 1
n

∑
j δ

2
ij = ⟨xi, xi⟩+ 1

n

∑
j⟨xj , xj⟩ (sum over j with x̄ = 0)

1
n2

∑
i

∑
j δ

2
ij =

2
n

∑
j⟨xj , xj⟩ (sum over (i, j) with x̄ = 0)

Solving for ⟨xi, xj⟩ hence yields

⟨xi, xj⟩ = −
1

2
(δ2ij − ⟨xi, xi⟩ − ⟨xj , xj⟩)

= −1

2

(
δ2ij −

1

n

∑
l

δ2il −
1

n

∑
k

δ2kj +
1

n2

∑
k

∑
l

δ2kl

)
Writing X := (x1| · · · |xn)⊤, the matrix form of the above is XX⊤ = −1

2H∆◦2H.
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Explaining the eigendecompôsition

This reasoning, à la Eckart and Young 1936, yields that the truncated eigenstructure of

∆c
2 provides a best approximation (in any Schatten norm) for a given rank. Therefore,

the embedding returned by CS solves:

minimize ∥∆c
2 − Y Y ⊤∥F

over Y ∈ Rn×d

Equivalently, if ∆c
2 = (bij)ij ,

minimize strain =
∑
i,j

(bij − ⟨yi, yj⟩)2

over y1, . . . , yn ∈ Rd
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Exactness of CS

Definition (Exact method)

A method is exact if it returns a point cloud Y realizing the input dissimilarities.

Note that all the realizing point sets are necessarily rigid transformations of each other.

The derivations above lead to the following (see Torgerson (1952, 1958)).

Theorem (Realizability and rank for CS)

� ∆ is Euclidean ⇔ ∆c
2 is positive semi-definite.

� If ∆ is Euclidean, it is realizable in dimension

rank(∆c
2) ≤ d ≤ n− 1,

in which case CS is exact.
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History of CS

In this form, CS is attributed to Torgerson (1952, 1958), but is based on earlier works

Eckart and Young 1936

(low-rank approximation)

↓
Young and Householder 1938

(via Richardson and Gulliksen)

↓
Torgerson 1952

Rao 1964 and Gower 1966 popularized the method in statistics (connections to PCA).

Other names include principal coordinates analysis (PCoA), Torgerson Scaling, and

Torgerson–Gower scaling.
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Perturbation and Consistency



Non-realizable case

CS realizes a graph when possible, and is a way to check when a graph is realizable.

In practice, (e.g. experiments in psychometry), the method has been applied to

non-realizable graphs. It can still be applied to output an embedding, but it will not be

exact because:

� ∆ is Euclidean but the embedding dimension d is (strictly) smaller than

rank(∆c
2); or

� ∆ is not Euclidean, and thus not realizable in any dimension.

If ∆c
2 has negative eigenvalues among the top d, then CS simply discards the corresponding

directions, effectively embedding the graph in dimension given by the number of positive

eigenvalues.

13



Handwavy stability

CS is known to practitioners to be stable to noise.

(It is not as stable to outliers. Robust variants available)

This is not surprising for a spectral method

(as eigendecomposition are known to degrade gracefully under perturbation)

For CS, perturbations have been studied in a few papers.

� Sibson 1979 provides some Taylor developments, later refined by de Silva and

Tenenbaum 2004.

� Arias-Castro, Javanmard, and Pelletier 2020 obtain true perturbation bounds for

classical scaling
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Theorem (Stability of CS – Arias-Castro, Javanmard, and Pelletier 2020)

� Let X ∈ Rn×d be centered with radius ρ and half-width ω.

� Write Ξ := (ξij := ∥xi − xj∥)ij and A := 3
√
dρ/ω2

� Given ∆ = (δij)ij , set

η4 :=
1

n2

∑
i,j

(δ2ij − ξ2ij)
2

Assume that η is small enough so that η/ω ≤ 1/
√
2.

Then CS applied with dimension d to ∆ returns a centered point cloud Y ∈ Rn×d

satisfying

min
Q∈O(Rd)

(
1

n

n∑
i=1

∥yi −Qxi∥2
)1/2

≤ Aη2.
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Comments on perturbative bounds

� Such a perturbation bound only makes sense in a noisy realizable setting.

� But what can be said in a truly non-realizable setting?

(i.e. where one that cannot be easily compared to a realizable one)

� What about for iid data in a general metric space?

� In such a situation, what does CS really “estimates”?
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Probabilistic consistency

Consider:

� A metric space (Q, δ) equipped with a (Borel) probability measure P .

� An iid sample Q1, . . . , Qn ∼iid P

� Apply CS ∆ := (δ(Qi, Qj))ij .

What happens to the output Y ∈ Rn×d in the large-sample limit n→∞?

Questions of consistency have been recently considered by Kroshnin, Stepanov, and

Trevisan 2022 and Lim and Memoli 2022, and building on that, by Arias-Castro and

Qiao 2022.
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Theorem (What CS converges to — Arias-Castro and Qiao 2022)

� (Q, δ) be a compact separable metric space equipped with a (Borel) probability

measure P , and Q1, . . . , Qn, Q,Q′ ∼iid P .

� Write Y = (Y1| · · · |Yn)⊤ ∈ Rn×d for the output of CS in dimension d.

� Set b(q, q′) := −1
2

(
δ(q, q′)2 − E[δ(q,Q′)2]− E[δ(Q, q′)2] + E[δ(Q,Q′)2]

)
Under mild conditions, there exists πn : Q→ Rd such that πn(Qi) = Yi a.s, and such

that

EQ

[
min
π∈Π
∥πn(Q)− π(Q)∥2

]
−−−→
n→∞

0,

where Π is the collection of functions minimizing the expected strain, that is

Π := argmin
π:Q→Rd

E
[(
⟨π(Q), π(Q′)⟩ − b(Q,Q′)

)2]
.
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Computation and Approximations



Computational complexity of CS

Step 1: double-centering the matrix of squared dissimilarities

▶ complexity O(n2)

Step 2: eigendecomposition

▶ complexity O(n2d) by a power method

Step 3: embedding

▶ complexity O(nd)

With d small (e.g., d ≤ 3), the complexity is quadratic in the number of nodes.
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Faster variants of CS

Various approximations to CS have been proposed, including

� FastMap by Faloutsos and Lin 1995

� MetricMap by Wang et al. 1999

� Landmark MDS by de Silva and Tenenbaum 2004

[see also (Kearsley, Tapia, and Trosset 1998; Priyantha et al. 2003)]

� FastMDS by Yang et al. 2006

� split-and-combine MDS by Tzeng, Lu, and Li 2008

The first two are a bit ad hoc. We review the third one. The last two are very similar.
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Landmark MDS

Step 1: Select landmark nodes

Uniformly at random among
(
n
k

)
/ With farthest point sampling

Step 2: Embed the landmark nodes

This is done by an application of CS.

Step 3: Embed remaining nodes

This is done by a form of lateration (aka external unfolding).

(positioning of a point based on its distances to landmarks)

↪→ Time complexity O(kdn) for n ≥ k.
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Lateration in vanilla Landmark MDS

� Yl ∈ Rk×d denote a centered point cloud playing the role of the m landmark

points.

� Consider a new node with dissimilarities δ := (δi) ∈ Rk×1 to the m landmarks.

Lateration from Landmarks

� Set µ2
i :=

1
k

∑k
j=1 ∥xj − xi∥2, so that µ◦2 ∈ Rk.

� Output position y := −1
2Y

†
l (δ

◦2 − µ◦2).
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Behind this lateration method: Nyström’s formula

Theorem (Nyström / Schur complement)

Let k < n, and

K =

(
A B

B⊤ C

)
∈ Rn×n

be a symmetric matrix with A ∈ Rk×k.

� K ≽ 0 ⇐⇒ A ≽ 0 and A ≽ BC†B⊤. (“a ≥ 0 and ac− b2 ≥ 0”)

� If rank(A) = rank(K), then C = B⊤A†B.

When rank(A) < rank(K), the matrix

K̃ :=

(
A B

B⊤ B⊤A†B

)
is called the Nyström approximation of K.
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Nyström for lateration with inner products

In the realizable case of Landmark MDS, up to polarization / double centering, we

observe inner products g = (⟨xi, x⟩)i≤n of a new point being embedded.

The Gram matrix of (x1| · · · |xk|x)⊤ ∈ R(k+1)×d is given by

K :=

(
Kl g

g⊤ c

)

where c ∈ R is unknown.

Assuming that rank(K) = rank(Kl), the Nyström’s formula gives c = g⊤K†
l g.

(↪→ i.e. we’d like the embedded position of x to be in the span of Y ⊤ )
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Nyström for lateration with inner products

Since Kl = YlY
⊤
l , we have K†

l = (Y †
l )

⊤Y †
l . Therefore,

K̃ :=

(
YlY

⊤
l g

g⊤ g⊤(Y †
l )

⊤Y †
l g

)
= Ỹ Ỹ ⊤,

where Ỹ := (Y ⊤
l |(Y

†
l g)

⊤)⊤ ∈ R(k+1)×d. The embedding of the new point x is thus

yLateration := Y †
l g.

Complexity: The evaluation of the new locations only requires a linear amount of

computation (in the number of landmarks), and only requires to compute Y †
l once.
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Nyström for lateration with distances

If only the dissimilarities δ = (∥xi − x∥)i≤k ∈ Rk×1 are available, we can use the

polarization trick. Indeed, since
∑k

j=1 xj = 0, we have

2⟨x, xi⟩ = ∥x∥2 + ∥xi∥2 − ∥x− xi∥2

=
1

k

∑
j

∥xi − xj∥2 +
1

k

∑
ℓ

∥x− xℓ∥2 −
1

k2

∑
k,ℓ

∥xj − xℓ∥2 − ∥x− xi∥2

= µ2
i +

(
δ◦2 −∆◦2

c,l

)
− δ2i .

Matricially, g = −1
2(δ

◦2−µ◦2−
(
δ◦2−∆◦2

c,l

)
1k). The Landmark MDS formula becomes

yLMDS = −1

2
Y †
l (δ

◦2 − µ◦2 −
(
δ◦2 −∆◦2

c,l

)
1k) = −

1

2
Y †
l (δ

◦2 − µ◦2),

where we used that Y †
l 1k = 0.
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Self-consistency of Landmark MDS

Landmark MDS. yields a lateration method that is exact when it is possible to be

exact.

Theorem

If Yl ∈ Rk×d is full rank and centered, then the Landmark MDS algorithm is

consistent with the embedded landmarks.

That is, if δ = (∥yi − yj∥)j for some i ∈ {1, . . . , k}, then the algorithm returns yi.

Arias-Castro, Javanmard, and Pelletier (2020) obtain a perturbation bound for this

form of lateration, which is then used to derive a perturbation bound for Landmark

MDS.
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FastMDS

Step 1: Partition the node set

Partition the set of nodes into subsets of approximately same size, say, k subsets

of size about m (so that k ×m ≈ n).

Step 2: Embed each subset

Embed each subset by CS obtaining ‘patches’.

Step 3: Align the patches

This is done by selecting s landmark nodes from each subset, embedding all

these k × s landmark nodes together by CS. Then align each patch with the

corresponding landmarks by procrustes.
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To Python!

29



Stress



Element-wise formulation of CS

As noted above, the embedding returned by CS solves the least squares problem

minimize ∥∆c
2 − Y Y ⊤∥2F

over Y ∈ Rn×d

or, equivalently, if ∆c
2 = (bij),

minimize strain =
∑
i<j

(bij − ⟨yi, yj⟩)2

over y1, . . . , yn ∈ Rd
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Find y1, . . . , yn ∈ Rd such that

∥yi − yj∥ ≈ δij

for all (or most) (i, j) ∈ E .

A more direct formulation as an optimization problem would lead, for example, to

solving (Kruskal 1964a,b)

minimize stress =
∑

(i,j)∈E

(δij − ∥yi − yj∥)2

over y1, . . . , yn ∈ Rd
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Kruskal’s stress

Other variants include smoother functionals such as (Takane, Young, and De Leeuw

1977)

s-stress =
∑

(i,j)∈E

(
δ2ij − ∥yi − yj∥2

)2
and more robust functionals such as (Heiser 1988)

absolute stress =
∑

(i,j)∈E

∣∣δij − ∥yi − yj∥
∣∣
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Fifty shades of stress I

Some notions of stress are based on ratios instead, such as (Ramsay 1982)

multiscale stress =
∑

(i,j)∈E

log2(∥yi − yj∥/δij)

which to first order coincides with (McGee 1966)

elastic stress =
∑

(i,j)∈E

(
1− ∥yi − yj∥/δij

)2
=
∑

(i,j)∈E

wij

(
δij − ∥yi − yj∥

)2
, wij := 1/δ2ij
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Fifty shades of stress II

Other notions of weighted stress include (Sammon 1969)

Sammon stress =
∑

(i,j)∈E

wij

(
δij − ∥yi − yj∥

)2
, wij := 1/δij
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Renormalized stress

These are in fact notions of raw stress, as they are sometimes normalized. For

example, Kruskal 1964a,b defines the normalized stress as√∑
(i,j)∈E(δij − ∥yi − yj∥)2∑

(i,j)∈E δ
2
ij

This version can provide a measure of quality of fit.
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Optimization

Take, for example, Kruskal’s stress

σ(y1, . . . , yn) :=
∑

(i,j)∈E

(δij − ∥yi − yj∥)2

Our goal is to solve

minimize σ(y1, . . . , yn)

over y1, . . . , yn ∈ Rd

Everything that follows extends in a straightforward manner to any weighted stress∑
(i,j)∈E

wij(δij − ∥yi − yj∥)2.
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Optimization

The problem is:

� non-convex (� Composition of convex functions possibly not convex � )

� high-dimensional: S : Rn×d → R

Even for d = 1 where it is sometimes called unidimensional scaling, this minimization

problem is known to be NP-hard (De Leeuw and Heiser 1977).

(Closely related to the problem of seriation, which is known to be NP-hard.)
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Gradient descent



Gradient descent

Kruskal 1964b proposes a first order gradient descent procedure.

y0i ← initialization

yt+1
i ← yti − ρt∇yiσ(y

t
1, . . . , y

t
n)

Simple calculations give

∇yiσ(y1, . . . , yn) = 2
∑
j∼i

yi − yj
∥yi − yj∥

(∥yi − yj∥ − δij)

and the step size ρt may depend on (yt1, . . . , y
t
n), in particular through the stress, and

is generally made to decrease.

Surprisingly, he seems to recommend a random initialization, rather than using the

output of classical scaling. (already established as the main method for MDS at the time) 38



Gradient descent matricially

Recall that Y = (y1| · · · |yn)⊤ and work with σ(Y ), to derive

1
2∇σ(Y ) = V Y −B(Y )Y

where

V :=
∑

(i,j)∈E

Aij B(Y ) :=
∑

(i,j)∈E

δij
dij(Y )

Aij

with

Aij := (ei − ej)(ei − ej)
⊤ dij(Y ) := ∥yi − yj∥

e1, . . . , en being the canonical basis for Rn.
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Fixed point method

Guttman 1968 looks at the equation giving the stationary points:

∇σ(Y ) = 0 ⇔ V Y = B(Y )Y ⇔ Y = V †B(Y )Y.

He hence proposes use the iterated fixed-point method

Y t+1 ← V †B(Y t)Y t.

It turns out that this is a form of gradient descent:

Y t+1 ← Y t − 1
2V

†∇σ(Y t).

De Leeuw 1988 establishes convergence of this procedure to stationary points.
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Second order methods

Kamada and Kawai 1989 apply the Newton–Raphson (2nd order) procedure to

minimizing the stress.

Other Newton and quasi-Newton variant procedures are applied, e.g., in (Glunt,

Hayden, and Raydan 1993; Kearsley, Tapia, and Trosset 1998).
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Augmentation, Majorization,

Alternate Minimization



Augmentation

Augmentation consists in introducing new variables to make some iterations more

straightforward. (Think EM algorithm.)

In general, suppose we want to solve

min
y

f(y)

The general idea is to find a auxiliary function g satisfying

f(y) = min
z

g(y, z)

such that both miny g(y, z) and minz g(y, z) are is relatively easy to compute.
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Alternate minimization

Note that

min
y

f(y) = min
y

min
z

g(y, z) = min
z

min
y

g(y, z)

This inspires an alternate minimization approach:

y0 ← initialization

zt ← argminz g(y
t−1, z)

yt ← argminy g(y, z
t)

In this scheme, the successive values of g are monotone:

g(yt, zt) = min
y

g(y, zt) ≤ g(yt−1, zt) = min
z

g(yt−1, z) ≤ g(yt−1, zt−1)
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Elegant approach

Leeuw 1975 proposes an augmentation approach called Elegant.

See (Browne 1987) for a related alternate minimization approach.

Working with the s-stress, define

σ(Y, δ) :=
∑
i,j,k,l

(
δijkl − dijkl(Y )

)2
with dijkl(Y ) := (yi − yj)

⊤(yk − yl)

where δijij = δ2ij is enforced throughout and Y remains centered.

(As it turns out, there is no need to store a 4-way tensor.)
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Elegant approach

Minimization over the δijkl (with Y fixed) is straightforward:

δijkl =

δ2ij if (i, j) = (k, l)

dijkl otherwise
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Elegant approach

For the minimization over the Y (with the δijkl fixed)

σ(Y, δ) =
∑
i,j,k,l

δ2ijkl − 2
∑
i,j,k,l

δijkldijkl(Y ) +
∑
i,j,k,l

dijkl(Y )2

= fun(δ)− 8n2
∑
i,j,k,l

trace(UY Y ⊤) + 4n2 trace((Y Y ⊤)2)

where uij :=
1

4n2

∑
k,l

(δikjl − δilkj − δkijl + δlikj)

= fun(δ) + 4n2 trace((Y Y ⊤ − U)2)

Y is obtained by a truncated eigendecomposition of U as in CS but with modified

dissimilarities that change with each iteration.
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Majorization

Majorization — aka Majorization-Minimization (Mairal 2015) — is a special form of

augmentation where

f(y) = g(y, y)

meaning that the minimization

f(y) = min
z

g(y, z)

is attained at y itself.

(Note that the y and z variables belong here to the ‘same’ space.)
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Sandwich inequality

The scheme simplifies to

y0 ← initialization

yt ← argminy g(y, y
t−1)

And the successive values of f are monotone:

f(yt) = min
y

g(yt, y) ≤ g(yt, yt−1) := min
y

g(y, yt−1) ≤ g(yt−1, yt−1) = f(yt−1)

Sequence of inequalities called sandwich inequality by De Leeuw 1977.
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Scaling by MAjorizing a COmplicated Function (SMACOF)

De Leeuw 1977 proposes a majorization approach to minimizing the stress today

known as Smacof (De Leeuw and Mair 2009).

Recalling that dij(Y ) = ∥yi − yj∥, we have

σ(Y ) =
∑

(i,j)∈E

(δij − dij(Y ))2

=
∑

(i,j)∈E

δ2ij − 2
∑

(i,j)∈E

δijdij(Y ) +
∑

(i,j)∈E

dij(Y )2

The key idea is the following application of the Cauchy–Schwarz inequality. For all

Z = (z1 · · · zn)⊤ ∈ Rn×d,

⟨yi − yj , zi − zj⟩ ≤ dij(Y )dij(Z).
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Scaling by MAjorizing a COmplicated Function (SMACOF)

Plugging this inequality in the second sum, we have

σ(Y ) ≤
∑

(i,j)∈E

δ2ij − 2
∑

(i,j)∈E

ζij(Z)⊤(yi − yj) +
∑

(i,j)∈E

∥yi − yj∥2

=: τ(Y,Z)

where ζij(Z) := δij(zi − zj)/∥zi − zj∥.

And, by construction,

σ(Y ) = τ(Y, Y )
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SMACOF is a fixed-point method

Hence, τ is majorizing, and the corresponding scheme is

Y 0 ← initialization

Y t ← argminY τ(Y, Y t−1)

which is attractive since Y 7→ τ(Y,Z) is (convex) quadratic.

As it turns out, the scheme coincides with Guttman 1968’s, because (with the same

notation as before)

∇Y τ(Y,Z) = 0 ⇔ V Y = B(Z)Z ⇔ Y = V †B(Z)Z
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Majorizing the absolute stress

Heiser 1988 designs a majorization scheme for the absolute stress:

σ(Y ) :=
∑

(i,j)∈E

∣∣δij − dij(Y )
∣∣

=
∑

(i,j)∈E

aij(Y ), aij(Y ) :=
∣∣δij − dij(Y )

∣∣
The basic inequality is, for any other configuration Z ∈ Rn×d,

2aij(Y ) ≤ aij(Z) + aij(Y )2/aij(Z)

which gives

2σ(Y ) ≤ σ(Z) +
∑

(i,j)∈E

bij(Z)aij(Y )2, bij(Z) := 1/aij(Z)

When Z is fixed, only the second term on the RHS matters and, being a weighted

stress, can be majorized as done before.
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Coordinate descent

Coordinate descent is also a form of alternate minimization. In its most basic form, it

tackles a multivariate minimization problem such as

min
y

f(y) ≡ min
y1,...,yp

f(y1, . . . , yp)

simply by proceeding one variable (or sometimes a batch of variables) at a time,

justified by

min
y1,...,yp

f(y1, . . . , yp) ≡ min
yπ1
· · ·min

yπp
f(y1, . . . , yp)

for any permutation (π1, . . . , πp) of (1, . . . , p).

(In our case, p = nd)
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Position descent

In stress minimization, such a procedure often operates at the level of positions, with

each position corresponding to d real variables when embedding in dimension d — a

variant which could be called position descent.

� This is implicitly what Shepard 1962 does, and explicitly what Agrafiotis 2003

does (in random order) to minimize the stress.

� Kamada and Kawai 1989 employ a variant of position descent in their

Newton–Raphson implementation.

� Gansner, Koren, and North 2004, Costa, Patwari, and Hero III 2006, Zhang et al.

2010 propose position descent variants of majorization.
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About initialization

All these iterative approaches require some initialization, i.e. a starting configuration.

Two main ways:

� Random initialization Draw n points at random from a distribution supported on

Rd (e.g., uniform in [0, 1]d).

� Classical scaling This option is available if all dissimilarities are provided (i.e., if

the graph is complete).

Some very limited numerical experiments in the noisy realizable setting indicate that the result is very

similar, although with a random initialization 10× more iterations are needed for convergence.

Iterative approaches may be seen as providing a refinement to an embedding

produced by a method like CS or any of the other methods that follow.
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Incremental approaches



Incremental constructions

A variety of incremental approaches have been proposed, for example, by Bronstein

et al. 2006; Cohen 1997; Williams and Munzner 2004 — among others (Klimenta

2012, Sec 7.1.1).

The general approach of Cohen 1997 and Williams and Munzner 2004 operates in

batches by:

1. Positioning the first batch, say, by applying CS;

2. For a subsequent batch, initialize each node at the same location as its closest

neighbor in the graph, and then applying an iterative method, say, Smacof.

Bronstein et al. 2006 develop a multigrid scheme.
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Beyond Landmark MDS

Another, distinct line of incremental methods implement flavors of sequential

lateration.

Recall Landmark MDS (de Silva and Tenenbaum 2004):

1. Select ‘landmark’ nodes (at random);

2. Embed the landmark nodes (by CS);

3. Embed remaining nodes (by Gower 1968’s lateration method).

What if not all nodes are reached in that way?
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Sequential Lateration

In sequential lateration (Aspnes et al. 2006; Bakonyi and Johnson 1995; Eren et al.

2004; Fang et al. 2009; Grone et al. 1984; Kearsley, Tapia, and Trosset 1998; Laurent

2001) the process is simply iterated, with the embedded points playing the role of

landmark points in the next iteration.

Sequential Lateration (Aspnes et al. 2006)

� Step 0: Select a complete subgraph V0 with at least d+ 1 nodes (at random) and

embed it using CS

� Step t: Laterize any node with at least d+ 1 neighbors in Vt−1 and add those

nodes to Vt−1 to form Vt
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Lateration graphs

Sequential lateration can operate even when some dissimilarities are missing (i.e., the

graph is not complete). When it is exact, the graph is a lateration graph (Aspnes et al.

2006).

Under mild conditions, a large random geometric graph is a lateration graph with high probability

(Arias-Castro and Chau 2022; Aspnes et al. 2006).

In recent work (Arias-Castro and Chau 2022), we derive a perturbation bound (with an

implicit constant) for sequential lateration in a noisy realizable setting built on a

lateration graph.
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Divide-and-Conquer



Patch-based methods

The incremental approaches already have a divide-and-conquer flavor to them, but

here we use that qualification for methods based on patches (embedded subgraphs).

We saw two such methods:

� FastMDS (Yang et al. 2006)

� split-and-combine MDS (Tzeng, Lu, and Li 2008)

However, these assume that all dissimilarities are available: Their main motivation is

computational.
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Divide-and-Conquer

We are interested in such approaches to better deal with situation where there are

missing dissimilarities.

Divide-and-Conquer (prototypical)

� Select a covering of the graph by complete subgraphs, each with at least d+ 1

nodes, and embed them (by CS)

� Align the patches (by a form of generalized Procrustes)

Variants of this general approach are proposed in (Cucuringu, Lipman, and Singer

2012; Drusvyatskiy et al. 2017; Hendrickson 1995; Koren, Gotsman, and Ben-Chen

2005; Krislock and Wolkowicz 2010; Shang and Ruml 2004; Singer 2008; Zhang et al.

2010), among other works.
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